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Distributed Denial-of-Service (DDoS) attacks aim at rapidly exhausting the communication and computa-

tional power of a network target by flooding it with large volumes of malicious traffic. In order to be effective,

a DDoS defense mechanism should detect and mitigate threats quickly, while allowing legitimate users ac-

cess to the attack’s target. Nevertheless, defense mechanisms proposed in the literature tend not to address

detection and mitigation challenges jointly, but rather focus solely on the detection or the mitigation facet. At

the same time, they usually overlook the limitations of centralized defense frameworks that, when deployed

physically close to a possible target, become ineffective if DDoS attacks are able to saturate the target’s in-

coming links.

This paper presents STONE, a framework with expert system functionality that provides effective and joint

DDoS detection and mitigation. STONE characterizes regular network traffic of a service by aggregating it

into common prefixes of IP addresses, and detecting attacks when the aggregated traffic deviates from the

regular one. Upon detection of an attack, STONE allows traffic from known sources to access the service while

discarding suspicious one. STONE relies on the data streaming processing paradigm in order to characterize

and detect anomalies in real time. We implemented STONE on top of StreamCloud, an elastic and parallel-

distributed stream processing engine. The evaluation, conducted on real network traces, shows that STONE

detects DDoS attacks rapidly, provides minimal degradation of legitimate traffic while mitigating a threat,

and also exhibits a processing throughput that scales linearly with the number of nodes used to deploy and

run it.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Internet security constitutes one of the most important chal-

lenges for a society where the demand of IT services increases every

day. Among the plethora of possible existing threats, Distributed

Denial-Of-Service (DDoS) attacks aim at rapidly exhausting the

communication and computational power of a network target by

flooding it with large volumes of malicious traffic. Despite the

seek of comprehensive solutions against DDoS attacks pursued by
� Some preliminar results have been published at the ACM Symposium on Applied

Computing (SAC) in 2013 by Callau-Zori et al., 2013.
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esearchers during decades, DDoS attacks are still a main threat since

oth their scale and typologies keep evolving and growing (Wang,

ohaisen, Chang, & Chen, 2015a).

DDoS defense frameworks are usually designed to react to an at-

ack (e.g., by inspecting each packet and deciding whether to forward

t or not) only after the latter has been detected (Dean, Franklin,

Stubblefield, 2002; Savage, Wetherall, Karlin, & Anderson, 2000;

ong & Perrig, 2001). Reactive frameworks have two main benefits.

n one hand, they do not degrade the user experience (e.g., in terms

f processing latency) if no attack is in progress. On the other hand,

y not distinguishing legitimate from illegitimate traffic by means of

redefined, a priori rules, they can also prevent threats that, as for

ash crowds, only involve legitimate traffic. A crucial aspect for an

ffective defense framework is to detect attacks as soon as possible

nd mitigate them before they successfully manage to disrupt the

arget’s services. Anomaly-based detection methods have the advan-

age of being able to discover previously unseen attacks by means of

iscrepancies between observed and expected traffic behavior. Pro-

osed methods are based on techniques such as principal component
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nalysis (Lakhina et al., 2004; Lakhina, Crovella, & Diot, 2005), domi-

ate states analysis (Xu, Zhang, & Bhattacharyya, 2005), multivariate

orrelation analysis (Tan, Jamdagni, He, Nanda, & Liu, 2014), cluster-

ng (Lee, Kim, Kwon, Han, & Kim, 2008), artificial neural networks

Wang, Hao, Ma, & Huang, 2010), genetic algorithms (Tsang, Kwong,

Wang, 2007), fuzzy logic (Shiaeles, Katos, Karakos, & Papadopoulos,

012) and finite state machines (Su, 2010). However, these are usu-

lly studied as off-line analysis methods and can be hardly applied

n online detection, due to their time and space complexities. It is

mportant to notice that successful detection not only depends on

he analysis defined by a defense framework, but also depends on its

lacement. Frameworks deployed close to the target can be useless

f the attack achieves the congestion of the target’s upstream routers.

hat is, DDoS defense mechanisms are more effective in detecting

nd mitigating an attack when deployed at the core of the network

e.g., backbone links, also referred to as vantage points; Gao, Li,

nd Chen, 2006). This placement, nonetheless, increases the overall

olume of traffic to deal with and the spectrum of possible threats.

From an expert system point of view, a comprehensive DDoS

efense framework should be able to detect possible threats in a

imely manner and, subsequently, mitigate them effectively. A re-

uirement for such an expert system is to define detection and mit-

gation schemes that share information useful both to spot a possi-

le threat and to mitigate it (Zhang, Li, & Gu, 2004). Nonetheless, the

everaging of the information maintained to detect threats in existing

xpert systems such as the ones discussed by (Kumar & Selvakumar,

012; Lee et al., 2008; Lin & Tseng, 2004; Wang et al., 2010) in order

o support the mitigatation of possible threats (e.g., by distinguish-

ng between legitimate and illegitimate traffic) is not straightforward.

his is believed to be one of the causes for the lack of expert systems

roviding comprehensive DDoS attacks defense, together with place-

ent limitations of frameworks that do not allow for parallel and dis-

ributed high-throughput and low-latency traffic analysis.

We present STONE, a framework with expert system functional-

ty that provides reactive anomaly-based DDoS detection and miti-

ation. In a nutshell, STONE runs prefix-level aggregation (Kim, Lau,

huah, & Chao, 2006b) to aggregate the traffic of individual sources

nto source clusters sharing a given prefix of their IP addresses. This

ggregation saves space and is motivated by the observation that the

ggregated behavior of a source cluster is more stable than the one

bserved for its individual flows (Kim et al., 2006b). Subsequently,

TONE groups source clusters (depending on their traffic features)

nd detects threats by studying how such groups evolve over time.

n anomaly is detected when an abrupt change is observed in the

istribution of source clusters to groups. Differently from other de-

ense frameworks, STONE has been designed to maintain information

hat does not only enable fast threat detection, but that is also lever-

ged during mitigation to specify which packets in the traffic should

e filtered and which not.

In order to meet the high processing throughput and low process-

ng latency needs of an effective DDoS defense framework, STONE has

een designed and implemented to run its analysis in a streaming

ashion. The data streaming processing paradigm has shown great

otential in addressing the performance requirements of threat de-

ection (Chin, Choudhury, Feo, & Holder, 2014; Ganguly, Garofalakis,

astogi, & Sabnani, 2007; Gao, Li, & Chen, 2006). In data streaming,

nformation is processed by incremental algorithms, producing re-

ults continuously. Existing distributed and parallel stream process-

ng engines such as StreamCloud (Gulisano, Jiménez-Peris, Patiño-

artínez, & Valduriez, 2010) allow to process millions of records per

econd.

STONE makes the following contributions:

• Joint detection and mitigation of DDoS attacks: STONE is a con-

figurable framework that provides expert system functionality

in which the information maintained to detect threats is also
leveraged during mitigation to effectively distinguishing legiti-

mate from suspicious traffic. We provide an attack characteriza-

tion and show that STONE is able to detect any attack conducted

by a number of malicious sources that exceeds a certain threshold,

the latter depending on STONE’s configuration parameters.
• Online and scalable traffic analysis: By relying on the data

streaming processing paradigm, STONE allows for parallel and

distributed traffic analysis that can be deployed at high-speed net-

work links (e.g., back-bone links). At the same time, by employing

data structures for approximated checks with low false posi-

tive/negative errors, it also reduces the space required to maintain

the information leveraged for threat detection and mitigation.
• Thorough experimental validation: STONE is implemented on top of

StreamCloud (Gulisano, Jiménez-Peris, Patiño-Martínez, Soriente,

& Valduriez, 2012; Gulisano et al., 2010), an elastic and parallel-

distributed stream processing engine. Its performance, measured

in terms of detection accuracy, filtering efficiency, monitoring

overhead and scalability, is evaluated using data sets derived from

real network traffic collected by CAIDA (Hick, Aben, & claffy, 2007)

and SUNET (Moradi, Almgren, John, Olovsson, & Philippas, 2011;

The Swedish University Computer Network OptoSUNET, 2012). As

we show, STONE is able to detect DDoS attacks quickly, to mitigate

them by filtering out the majority of the suspicious packets while

keeping a high percentage of the legitimate traffic unaffected. At

the same time, it also exhibits a processing throughput that scales

linearly with the number of nodes used to deploy it.

The rest of the paper is organized as follows: Section 2 discusses

he system model, Section 3 presents an overview of the architec-

ure of STONE, discussed in detail in Sections 4 and 5. Section 6 dis-

usses the implementation of STONE on top of StreamCloud, Section 7

resents our evaluation, Section 8 discusses the related work while

ection 9 concludes the paper.

. System model and problem formulation

In this section, we introduce the network and stream models, we

efine the adversary model and state the problem that STONE aims to

olve.

.1. Network system model

The network is modeled as a system composed of four kinds of en-

ities: (1) protected entities, network entities that can be potentially

ttacked and, therefore, protected by STONE (they can be servers,

ubnets, or network bottleneck links); (2) legitimate hosts, end-hosts

hat consume protected entities’ services without malicious inten-

ions; (3) STONEmachines, a set of machines (can be either routers or

ommon machines) used to run STONE and provide DDoS detection

nd mitigation and (4) bots, network hosts that are controlled by the

dversary to launch DDoS attacks to the protected entities. The pro-

ected entities, legitimate hosts and the bots are connected via net-

ork links and routers, while the STONE machines form a separated

rivate network that cannot be reached by them. Note that STONE can

e used for protection of both a single host and multiple hosts. It can

lso be extended for deployment in traffic control frameworks such

s CluB (Fu, Papatriantafilou, & Tsigas, 2011). For the ease of the ex-

lanation, and without loss of generality, we present in the following

ow STONE behaves considering only the traffic being sent to a spe-

ific protected entity.

STONE uses anomaly-based detection to detect flooding-based

DoS attacks aiming at depleting the victim’s network bandwidth.

o effectively detect the attacks, a baseline of the legitimate traffic

s built and is constantly compared with real time traffic behavior

o identify deviations that may be caused by an attack. When build-

ng and maintaining profiles, an important issue is the stability of the
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baseline profile. If the normal traffic behavior is quite unpredictable,

then anomaly-based detection is not feasible. Fortunately, the normal

traffic behavior indeed has periodical patterns. Based on the obser-

vation from the traffic analysis literature (Aiello, Gilbert, Rexroad, &

Sekar, 2005; Roughan et al., 2002; Sekar, Duffield, Spatscheck, van der

Merwe, & Zhang, 2006) and also from the analysis of our own datasets

from the network backbone traffic, STONE uses time-of-week profiles,

assuming that during normal network situations (i.e., without DDoS

attacks) traffic behavior has basic periodicity of one week and that

traffic patterns are relatively stable week to week.

2.2. Adversary and anomaly detection model

STONE focuses on mitigating network-layer flooding attacks

where a powerful adversary can control numerous zombie machines

(bots) to send large amounts of packets exhausting network resources

such as link capacity, router buffers or server computation resources.

STONE does not aim to mitigate vulnerability attacks (Mirkovic & Rei-

her, 2004) that exploit system vulnerabilities sending to the victim

malformed packets that can cause excessive computation resources

consumption or system reboot, such as Teardrop (CERT Coordination

Center, 1997) or ping of death (CERT Coordination Center, 1997)

attacks.

In particular, we focus on attacks that can be modeled as con-

nection requests flooding (e.g., TCP SYN flooding) and bandwidth

flooding (e.g., UDP or ICMP flooding). The potential targets can be a

single server, a subnet or bottleneck network links. In a connection

request flooding attack, the adversary initiates a massive number of

seemingly legitimate connections to the victim server, holding most

of its computation resources and thus denying services to legitimate

clients. In a SYN-flood (Eddy, 2007), this is done by flooding a vast

amount of SYN packets and thus forcing the victim to maintain many

spurious sessions. During a bandwidth flooding attack, the adversary

aggregates a big volume of traffic (possibly from zombie machines)

to congest the target network link. The adversary can use different

types of packets in the flooding attacks, such as TCP packets, UDP

packets, ICMP packets, etc.

We assume that the adversary has no knowledge about charac-

teristics of the victim’s traffic such as the distributions of source ad-

dresses, the number of flows and the rates of flows. In other words,

the adversary can hardly launch an attack without disproportional

changes of the victim’s traffic features. With respect to the reference

information maintained by STONE, we assume that the attacker can

neither modify nor pollute it. We stress that preventing the pollution

of the reference information is orthogonal to the task of using it in

order to detect attacks.

2.3. Stream processing model

In data streaming, incoming data is processed on-the-fly by con-

tinuous queries (simply referred to as queries in the remainder), de-

fined as directed acyclic graphs of streams and operators. A stream

is an unbounded sequence of tuples. All the tuples belonging to

the same stream share the same schema, composed by attributes

A1, . . . , An. For any schema, a field ts ∈ A1, . . . , An represents the time

when the tuple has been created. Given tuple t, t.Ai (resp. t.ts) refers

to the value of attribute Ai (resp. to its timestamp). Streams are con-

sumed and produced by operators. Typical data streaming operators

can be classified as stateless or stateful. Stateless operators do not

maintain a state that evolves depending on the tuples beings pro-

cessed and perform their computation based on individual tuples.

Examples of stateless operators computations include tuple filtering

or tuples’ schema modifications. Stateful operators perform opera-

tions on sequences of tuples. Examples of stateful operators computa-

tions include aggregation of tuples or joining of tuples from different

streams. Due to the unbounded nature of streams, stateful operators’
esults are computed over the most recent sliding window of tuples

e.g., tuples received in the last 5 min). Time-based sliding windows

over overlapping periods of size time, advance time units far from

ach other. For instance, a window of size 30 min and advance 10 min

ill cover periods [8:00:00–8:30:00), [8:10:00–8:40:00) and so on.

STONE defines two input data streams: network stream, S, and ag-

regated network stream, Sa. S represents the flow of packets sent

o a protected entity; from STONE’s perspective, each packet can be

een as a tuple 〈ts, srcIP, bytes〉. Attributes ts, srcIP and bytes repre-

ent the timestamp, the source IP address and the size of the packet,

espectively.

The stream Sa aggregates S packets on a per-srcIP basis over pe-

iods of time. A tuple in Sa is composed of attributes 〈srcIP, tsA, tsB,

ackets, bytes〉. As an example, given period 8:00:00–8:00:30, tuple

A, 8: 00: 12, 8: 00: 25, 5, 250〉 specifies that A sent 5 packets and a

otal of 250 bytes during the period of time starting at 8: 00: 12 and

nding at 8: 00: 25. Stream Sa can be created from S using monitor-

ng applications such as Cisco Netflow, which are widely supported

y network devices or ISPs.

.4. Problem formulation

Given a protected entity and its maximum bandwidth L (e.g., ex-

ressed in kbit/s), the goal of STONE is to monitor the traffic to (a)

etect possible attacks and (b) to filter the traffic when it exceeds a

hreshold bandwidth αL, with α ∈ [0, 1] specified in advance. When-

ver filtering is applied, STONE tries to maximize the percentage of

egitimate traffic forwarded to the protected entity. The challenge lies

n which criteria to use to discard or forward packets in S while ensur-

ng that the traffic that reaches the protected entity does not exceed

he entity’s maximum bandwidth.

The reason why STONE activates the filtering mechanism only

hen the protected entity is near to be saturated is two-fold. On one

and, our solution is not intended to analyze the cause of the anomaly

nd does not distinguish between legitimate or illegitimate traffic

pikes; therefore, we try to minimize the impact on the legitimate

raffic by activating the filtering mechanism only when necessary. On

he other hand, forwarding potentially malicious traffic when αL is

ot exceeded makes it harder for the adversary to adapt the attack

epending on how the system is reacting to it.

STONE can be used to protect an entity from malicious activity as

ell as from legitimate peak loads (e.g., flash-crowds). For this rea-

on, we use the term legitimate traffic in a global way to refer to

ources that are either frequently communicating with the victim

ost or that were communicating with it before the attack or peak

oad started.

. System overview

STONE analyzes and compares live and reference features of each

rotected entity’s traffic in order to detect and mitigate attacks. This

ection overviews STONE’s components, described in detail later in

ections 4 and 5.

Fig. 1 presents STONE’s architecture. The Detection Control Center

DCC) is the subsystem in charge of detecting threats. It consumes

he aggregated network stream Sa while comparing live and reference

eatures, maintained at the Historic Dataset (HD). The Mitigation Cen-

er (MC) is placed between S and the protected entity and takes care

f filtering the traffic if it exceeds the threshold bandwidth, αL. Its

utput stream Sm is equal to S whenever the incoming load is lower

han αL, or a subset of S when filtering is applied. If the MC is not

ctive, it simply forwards S packets, resulting therefore in a negligi-

le overhead for the protected entity. Upon detection of a threat, the

CC shares with the MC the information needed to mitigate it. In the

ollowing, we provide an overview of the DCC and MC.
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Fig. 1. STONE architecture.
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Detection Control Center(DCC): In order to detect suspicious traffic,

he DCC needs to maintain information about the sources that com-

unicate with the protected entity. Nevertheless, it might be imprac-

ical to maintain such information by means of individual per-IP pro-

les due to the large number of distinct sources that communicate

ith a protected entity. At the same time, predictions based on indi-

idual profiles could only be reliable for sources that contribute sig-

ificantly to the protect ed entity’s traffic (Kim, Won, & Hong, 2006a).

or these reasons, the DCC initially aggregates the information car-

ied by Sa tuples running IP prefix-level aggregation (Sekar et al.,

006). That is, it maintains traffic features for groups of source IPs,

eferred to as source clusters (srcCL), sharing the same prefix of b bits.

ource clusters define the smallest reasoning unit for both threat de-

ection and mitigation.

Tuples consumed by the DCC (stream Sa) carry information about

he number of packets, bytes and the duration of each flow. Traffic

nformation is consumed by the DCC, which maintains eight groups

G0, . . . , G7} of source clusters (each traffic feature is partitioned in 2).

roups’ ratios (the fraction of source clusters falling into each group

iven the overall number of source clusters) characterize the traffic

istribution (as histograms estimate probability density functions).

herefore, groups’ ratios are continuously monitored and a threat is

etected when the distance between its current and expected num-

er exceeds a given threshold. In our model, the adversary has no

nowledge about the characteristics of the protected entity’s traffic.

n other words, the adversary does not know which (and how many)

f its source clusters stand out because of their contribution to the

verall traffic in terms of packets, bytes or duration. Hence, he is not

ble to flood the system without modifying significantly the reference

roups’ ratios. More details are provided in Section 4.

In order to cope with the evolving nature of the protected entity’s

raffic, the DCC partitions source clusters to groups based on a portion

f the most recent data. As introduced in Section 2, traffic is analyzed
12 p.m. 12 a.m.6 a.m.

Pi

Monitoring 

Period S

o

Retrieve information

about expected behavior

Study current traffic

(Day n)

Day 1 Day 2

Historic pe

In
c
o

m
in

g

T
ra

ff
ic

Fig. 2. Detection based on tim
sing time-of-week profiles. As presented in Fig. 2, each time a period

tarts (e.g., Monday, 11:00–12:00 a.m.), the information maintained

t the HD is retrieved to compute the expected reference point group

atios. At the end of a monitoring period, the observed traffic is stored

nd merged with the information maintained at the HD.

Mitigation Center (MC): The MC is responsible for mitigating threats

hile preventing the degradation of the protected entity’s legitimate

raffic. As discussed at the end of Section 2, we consider as legitimate

he traffic generated by two types of sources: (1) sources commu-

icating frequently with the protected entity and (2) sources have

ecently been communicating with the protected entity before an at-

ack is detected. MC relies on two separate mechanisms to identify

he traffic associated to these types of sources. Traffic generated by

he sources that communicate frequently with the protected entity is

dentified relying on an “Acquaintance List” (AL), based on the infor-

ation stored at the HD. At the same time, an enhanced Bloom Filter

Broder & Mitzenmacher, 2003) (BF) is used to maintain, a possibly

arge number of, source clusters that have been most recently com-

unicating with the protected entity before the attack is detected.

To avoid bandwidth exhaustion by legitimate traffic and achieve

eighted fairness among legitimate sources, legitimate traffic is

orwarded through channels associated with different groups of

ource clusters. The channels are queues with bounded rate, imple-

ented as a Weighted Fair Queuing mechanism (Zhang, 1990), where

he weight of each queue depends on the average proportion of

ncoming traffic that belongs to the corresponding group. Traffic that

s not recognized as illegitimate is forwarded through a dedicated

hannel (i.e. another queue in the weighted fair queuing mechanism)

or suspicious traffic. However, in particular scenarios such as flash

rowds, suspicious traffic might indeed be legitimate. For this reason,

uspicious traffic is also forwarded relying on a Probabilistic Filtering

PF) mechanism that prevents the flooding of the protected entity.

detailed description of the MC filtering mechanism is given in

ection 5.

. Detection Control Center

In this section, we present in detail the operations performed by

he DCC and the interaction with the HD. We also provide a charac-

erization of the attacks that can be detected by the DCC (Section 4.3)

nd study its time complexity (Section 4.4).

The DCC consumes the aggregated stream Sa in order to detect

hreats. In Fig. 3, we show the four steps of its detection process:

Prefix-level aggregation and computation of traffic features: The

CC consumes tuples from Sa running IP prefix-level aggregation
6 p.m. 12 p.m.

tore information about 

bserved behavior

Today

Day n-1

Merge observed behavior

with historic data

riod (e.g., 1 month)

...

Time

e-of-week monitoring.
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(a) Prefix-level aggregation and
computation of traffic features

(b) Computing source
clusters’ features

(c) Grouping of source clusters (d) Anomaly detection

Fig. 3. Detection Control Center at a glance.
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(Sekar et al., 2006). A time-based sliding window is used to maintain

the traffic features of each srcCL observed over a period of one hour.

In the example, two tuples referring to srcCL1 are received in window

W1, covering period 8:00–9:00. Similarly, one tuple referring to srcCLI

is received in window WI (Fig. 3(a)).

Computing source clusters’ features: Traffic belonging to each win-

dow Wi is aggregated into a feature 3D-point fi = (φi,ωi, τi), where

φi, ωi and τ i represent the average number of packets, bytes and

flow duration, respectively. In the example, the feature 3D-point of

srcCL1 is f1 = (2, 18, 1) (on average, flows in srcCL1 involve 2 pack-

ets of 18 bytes and last 1 min) while the feature 3D-point of srcCLI is

fI = (50, 2000, 5) (Fig. 3(b)). The concrete equations to compute the

features in a sliding window are described in Section 4.1 and discuss

the time complexity of the sec:dcc:complexity.

Grouping of source clusters: Source clusters are partitioned into

eight groups {G0, . . . , G7} depending on the relative position of their

features with respect to a reference point O. In Section 4.2 we dis-

cuss how the reference point O, crucial for the detection process, is

computed. The reference point O is selected so that source clusters

who contribute little to the overall traffic fall in G0 while other source

clusters (i.e., source clusters sending a significant amount of pack-

ets or bytes or showing long lasting flows) fall in groups {G1, . . . , G7}
(Fig. 3(c)).

Anomaly detection: Being n̂i the number of source clusters in

group Gi, the current ratio r̂i = n̂i/
∑

j n̂ j and the reference ratio ri =
ni/

∑
j n j (computed from the information maintained at the HD, as

discussed in Section 4.2) are continuously compared, for i = 0, . . . , 7.

An anomaly is detected whenever maxi |ri − r̂i| ≥ tol (Fig. 3(d)).

The above four steps describe how threats are detected based on

the traffic features computed over a sliding window and based on the

reference values (the reference point O and the reference ratios {ri})

that are determinant for an effective threat detection. In the follow-

ing, we describe in detail how source clusters’ features are computed

(Section 4.1) and how the DCC interacts with the HD to compute and

maintain the reference values (Section 4.2). Finally, we discuss the

possible impact of an attack given the information maintained by

STONE (Section 4.3).
.1. Computing source clusters’ features over a time-based window

The DCCmaintains four counters in order to compute the features

fi = (φi,ωi, τi) of each cluster. Since STONE relies on the data stream-

ng processing paradigm and its evolving windows, these counters re-

er only to the most recent information carried by Sa tuples. More

oncretely, given Eq. (1), the DCC maintains a separate counter for:

1. the overall number of packets in the current window,∑
t∈Wi

t·packets,

2. the overall number of bytes in the current window,
∑

t∈Wi
t·bytes,

3. the overall elapsed time,
∑

t∈Wi
(t·tsA − t.tsB), and

4. the number of tuples observed in the current window, ni,

The average number of packets, the average number of bytes and

he average elapsed time are then computed by dividing each respec-

ive counter by the number of tuples observed in the window (ni).

φi = 1

ni

∑
t∈Wi

t·packets

ωi = 1

ni

∑
t∈Wi

t·bytes

τi = 1

ni

∑
t∈Wi

(t·tsA − t·tsB)

(1)

.2. Interaction with the Historical Dataset (HD)

The DCC uses historical information to compute the reference ra-

ios r0, . . . , r7 and the reference point O. The historical information is

aintained at the Historical Dataset (HD).

The HD stores information from the past D days in intervals (e.g.,

ednesday 10:00:00–11:00:00 during the last 10 weeks). Both the

eference point and the reference ratios are calculated by weighting

uch information depending on its closeness to the present (i.e., giv-

ng more weight to recent information). Given D days d1, . . . , dD (be-

ng d1 the earliest), the contribution of day dj is w times bigger than
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he contribution of day d j−1. In our prototype, w is set to 2, but it can

e changed as other parameters of STONE. The weight αj of day dj is

omputed according to Eq. (2).

If w �= 1, then

⎧⎨
⎩

α1 = w − 1

wD − 1

α j = wj−1α1 ∀ j = 2, . . . , D

If w = 1, then α j = 1

D
,∀ j = 1, . . . , D

(2)

Reference ratios r0, . . . , r7 are computed using the number of

ource clusters belonging to all groups observed in the previous D

ays. The number of source clusters belonging to group Gg in day dj,

eferred to as n
( j)
g ∀g = 0, . . . , 7 and j = 1, . . . , D, is maintained at the

D and updated by the DCC as traffic is analyzed. Hence, the weighted

umber of source clusters for group Gg during the previous D days is

omputed as
∑

j α jn
( j)
g . The reference ratio rg of group Gg is computed

s the ratio between the weighted number of source clusters in group

g over groups G0, . . . , G7 (Eq. (3)).

g =
∑D

j=1 α jn
( j)
g∑D

j=1 α j

∑7
g=0 n( j)

g

∀g = 0, . . . , 7 (3)

Each source cluster’s contribution to the reference point O =
Oφ, Oω, Oτ ) is weighted for each day j = 1, . . . , D. However, the con-

ribution is not weighted over all days D but rather on the number

f days Di during which each srcCLi contributed to the protected en-

ity’s traffic. Doing this, the contribution to the reference point O of

he source clusters communicating frequently with the protected en-

ity is greater than the one of source clusters communicating sporad-

cally. The HD stores the features for each source cluster for each day

f
( j)
i

= (φ( j)
i

,ω( j)
i

, τ ( j)
i

), ∀i = 0 . . . 7 and j = 1, . . . D. The reference fea-

ure for each cluster is computed as presented in Eq. (4) (showing the

omputation of φi, feature φ of srcCLi).

i =
∑
j∈Di

α jφ
( j)
i

/
∑
j∈Di

α j (4)

The reference point O is computed as the weighted 0.95-quantile

f the reference features {fi} of each source cluster srcCLi. The fea-

ures of each source cluster srcCLi are weighted depending on Di by

i = ∑
j∈Di

α j . The 0.95 value is motivated by Kim et al. (2006a), stat-

ng that more than 90% of the traffic flows are small flows (in terms

f their contribution to the overall traffic). Assuming that source clus-

ers features are independent, group G0 includes the 95% × 95% × 95%

86% of the overall source clusters that send less packets, bytes and

hat exhibit the lower flow durations.

.3. Attack characterization

This section formalizes the impact of an attack with respect to the

nformation maintained by STONE. The characterization is helpful to

etermine DCC parameters such as the tolerance tol and the pre-

x length used to aggregate flows. Packet flooding attacks usually in-

olve a large number of machines connected to a protected entity at

he same time. We consider an adversary model where the amount

f illegitimate traffic is generated uniformly from the source clusters

o which illegitimate IPs belong to. Such a scenario takes place when

he attacker chooses bots randomly and when each malicious source

P generates approximately the same amount of traffic. Since source

lusters will behave similarly, most likely they will fall in the same

roup. This will lead to an abrupt change in the group frequencies

hat should be detected by STONE.

Given N possible source clusters, NL source clusters are known by

he DCC (i.e., their features are stored in the HD) while N − NL source

lusters have not been observed before. We refer to NI as the number

f malicious source clusters selected to launch the attack. We first
tudy which portion Nnew
I

of them overlaps with the previously un-

een N − NL source clusters.

roposition 4.1. The number of malicious source clusters that overlaps

ith the previously unseen ones, Nnew
I

follows a Binomial (NI, 1 − p) dis-

ribution, if N and N − Nnew
I

are large enough and p = NL/N is close to 0.

roof. The number of malicious source clusters Nnew
I

follows a hy-

ergeometric distribution Nnew
I

∼ G(N, m, n) with parameters N, m =
− NL and n = NI . The proposition is proved using the probabilistic

esult by Rice (2001). �

Since the number of possible source clusters is N = 2b, the above

esult gives an intuition about the mask length b that should be used

o run prefix-level aggregation according to the protected entity traf-

c. Notice that the hypothesis is not too strict. The prefix length cho-

en to aggregate flows should define a large N in order to avoid a

oo coarse-grained partitioning of traffic to source clusters. In other

ords, N should be chosen to be much higher than NL, the number of

nown source clusters. A tradeoff exists between the space complex-

ty (that is, the information stored for NL known source clusters) and

he ability to discover threats.

If we consider the number of unknown source clusters that must

ppear in order to detect a traffic anomaly, we have that this number

is related to the information archived in the DCC and the reference

arameters.

roposition 4.2. In the worse case, the number of new source clusters

hich must appear to detect a traffic anomaly is a = tol NL
1−( max j r j+tol) .

roof. Lets G j0
be the group raising the anomaly, that is, |r j0

− r̂ j0
| ≥

ol. The current ratio is given by r̂ j0
= (r j0

NL + Nnew
I

)/(NL + Nnew
I

);

ccording to the number of legitimate source clusters r j0
NL, the num-

er of new source clusters Nnew
I

and the total number of source cluster

L + Nnew
I

. We have tol ≤ |r j0
− r j0

NL+Nnew
I

NL+Nnew
I

| = Nnew
I

NL+Nnew
I

(1 − r j0
), then

new
I

≥ tol NL
1−(r j0

+tol) . In the worse case, the value is achieved when

j0
= max j r j, proving the result. �

The result helps in determining the tolerance parameter tol ac-

ording to the host traffic (NL and max jrj). Merging both results, we

et a general view of the attack characterization that helps in choos-

ng the DCC parameters given the traffic behavior.

heorem 4.3. STONE detects an attack with high probability, 1 − δ,
f the number of source clusters affected by the attacker NI is at

east α = a + log (1−δ)−a log (1−p)
log p

, where the value of a is given by

roposition 4.2.

roof. If NI ≥ α, then (NI − a) log p + a log (1 − p) ≥ log (1 − δ). Ob-

aining Pr{Nnew
I

= a} = (NI
a )(1 − p)a pNI−a ≥ 1 − δ due to Proposition

.1. As a result of Proposition 4.2 an anomaly is detected if Nnew
I

=
. �

.4. Time complexity analysis

In this section, we show that our detection method has a O(1) time

omplexity. As discussed in Section 4, the DCC module performs four

ain steps for each incoming aggregated packet. Firstly, the com-

utation of traffic features finds the srcCL to which the aggregated

acket belongs to (searching through all of them in a worst case sce-

ario in which source clusters are maintained using a list or, as in our

ase, in a constant average time by relying on a hash table). Thus, the

rst step has a time complexity O(m × p) since one profile is main-

ained for each srcCL. Secondly, in order to compute source clusters’

eatures, the aggregation of each feature results in a time complex-

ty O(m), independently of the window size. Thirdly, to determine the

ource cluster’s group it is enough to check the relative position of



9626 V. Gulisano et al. / Expert Systems With Applications 42 (2015) 9620–9633

Input packet

Load L

exceded?

Mitigation

active?

No

Yes

No

Legitimate traffic

No

Discard

Yes

Protected entity

Channels Discard

Yes

Is it in the
Bloom Filter?

Is it in the
Acquaitance List?

No

Yes

Probabilistic
filtering Discard

Suspicious traffic

Groups: G1 G7 Group: G0

Yes

No

,  .  .  .  ,

Fig. 4. Filtering protocol.

Fig. 5. Time-based Bloom Filter.
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the feature with respect to the reference point. Thus, the third step

has O(m) time complexity. Finally, whenever a group changes, only

two ratios must be updated (old and new group ratio). Hence, the

time complexity of the DCC is O(m × p). Because the number of fea-

tures, m, is a fixed number (3 in our case) and because the maximum

number of profiles, p, is determined by prefix aggregation in advance,

the overall time complexity for the DCC module is O(1).

5. Mitigation Center

The Mitigation Center (MC) is responsible for discarding packets

during an attack while not exceeding the protected entity maximum

load L and while minimizing the degradation of the legitimate traffic.

Fig. 4 presents the MC filtering protocol. The mitigation mecha-

nism is reactive, concretely, the mitigation it is activated (resp. deac-

tivated) when the load forwarded to the protected entity exceeds αL

(respectively falls below αL); and the information used to filter pack-

ets is passed to the MC by the DCC. As introduced in Section 3, the MC
relies on the Acquaintance List (AL) to forward the traffic generated by

the sources that communicate frequently with the protected entity

(i.e., traffic generated by source clusters falling in groups G1, . . . , G7).

At the same time, it relies on a Bloom Filter (BF) to forward the traf-

fic of the sources communicating with the protected entity before an

attack is detected. Since traffic generated by source clusters falling in

groups G1, . . . , G7 is already forwarded based on the AL, the BF is used

to maintain only the source clusters falling in group G0. A portion of

the protected entity’s bandwidth, referred to as the allowed suspicious

bandwidth LA, is dedicated to suspicious traffic (which might be legit-

imate in scenarios such as flash crowds). A naïve approach to forward

suspicious traffic might be to forward all suspicious packets as long

as LA is not exhausted (e.g., given LA = 100 B/s, the first 100 bytes of

suspicious traffic would be forwarded during each period of 1 s). Such

approach would not provide the same chance to reach the protected

entity to all the suspicious packets belonging to the same period. This

limitation is overcome by STONE’s non-blocking Probabilistic Filter-

ing (PF) mechanism. As introduced in Section 3, together with the

AL, the BF and the PF mechanism, channels are used to distribute the

available bandwidth to groups resembling the distribution observed

in the baseline profile.

In the rest of the section, we discuss the filtering based on the

Bloom Filter BF (Section 5.1), the probabilistic filtering of suspicious

packets PF (Section 5.2) and the channel mechanism (Section 5.3).

5.1. Filtering based on the Bloom Filter

STONE relies on a BF to maintain source clusters belonging to

group G . Bloom Filters are designed to maintain sets of elements;
0
ew elements can be added to the set but not removed, which is a

hortcoming under the sliding window model. In order to overcome

his limitation, we define a time-based Bloom Filter to check the mem-

ership of elements in a time-based window. The timestamp of the

ast inserted element is associated with each entry in the BF main

rray. An element does not belong to a given time interval if any of

ts positions in the array is set to 0 or if the time distance between

ny of the timestamps associated to its positions and the timestamp

f the last element inserted exceeds the window size. The presented

ime-based Bloom Filter has the same accuracy and complexity that

he one discussed by Broder and Mitzenmacher (2003).

Fig. 5 presents an example where three elements x, y and z (with

imestamps 7:59, 8:03 and 8:05) are inserted in a time-based BF

hose window size is of 5 min. In the example, the BF array size is

0 and 3 hash functions are used to add elements. First, element x is

dded to the BF setting 1 and timestamp 7:59 to positions 2, 3 and 10.

ubsequently, element y is added, setting 1 and timestamp 8:03 to

ositions 3, 5 and 6 (elements x and y overlap in position 3). Finally,

lement z is added setting 1 and timestamp 8:05 to positions 6, 9 and

0 (elements x and z overlap in position 10 while elements y and z

verlap in position 6). Suppose that, when adding element z, we are

nterested in checking whether element x has been added to the BF in

he last 5 minutes. We can conclude that element x was added more

han 5 min ago because, even if all its positions are set to 1, the dis-

ance from the timestamp at position 2 (7:59) and the timestamp of

(8:05) is greater than 5 min.

.2. Probabilistic filtering of suspicious traffic

With probabilistic filtering, each suspicious packet p is forwarded

o the protected entity according to a Bernoulli trial (this way, each

acket gets the same chance of being forwarded to the protected en-

ity). The trial probability is related to the allowed suspicious band-

idth LA, representing the fraction of the protected entity bandwidth

evoted to suspicious traffic. The probability to forward a packet p is

iven in Eq. (5). 1 − μ represents the remaining time of the current
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Fig. 6. Data streaming operators composing the Detection Control Center.

Table 1

Example of probabilistic filtering.

Packet: 〈time (sec),

bytes〉 Available LA next restart Pr{forward} Action

p1 = (1.01, 60) 100 0.99 1 Forward

p2 = (1.05, 55) 40 0.95 0.42 Discard

p3 = (1.7, 20) 40 0.3 1 Forward

p4 = (1.75, 10) 20 0.35 0.57 Forward

p5 = (2.15, 10) 100 0.85 1 Forward
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eriod while parameter β is used to bound the probability.

r{p is forwarded} = max

{
β

LA

1 − μ
, 1

}
(5)

In the following, we present a sample execution of the probabilis-

ic filtering mechanism (Table 1). We consider a sequence of 5 sus-

icious packets {p1, p2, p3, p4, p5}. In each row, the table presents

he available suspicious bandwidth LA (set to 100 bytes), the remain-

ng time of each period, the probability with which the packet is for-

arded and the resulting action in the experiment.

.3. Channel mechanism

The filtering mechanisms presented so far are intended to prior-

tize legitimate traffic over suspicious one. Nevertheless, their effec-

iveness might be impaired if source IPs employed by the attacker

nd legitimate ones overlap. That is, if there is no upper bound for the

andwidth that can be consumed by each source cluster and if part

f the malicious IPs happens to belong to a legitimate source cluster,

he attacker could potentially generate enough traffic to exceed L. We

tress that, given our adversary model, this scenario does not happen

ntentionally.

The channel mechanism is responsible for adjusting the portion of

he overall bandwidth that can be used by each source cluster. More

oncretely, channels are used to distribute L to groups resembling the

raffic distribution observed in the baseline profile, thus avoiding in-

ividual source clusters traffic from exceeding L. STONE maintains 9

hannels: one channel for each group plus a dedicated channel for

uspicious traffic. Each channel is associated to a bandwidth weight

weight ξ g for each group Gg and weight ξ S for the suspicious traffic).

o resemble the baseline traffic distribution, groups use the informa-

ion stored in the HD, while suspicious traffic is based on the maxi-

um probability to forward a suspicious packet β . That is, without

hannel mechanism, the bandwidth used by suspicious traffic is (in

ean) βL. The channels are implemented as a Weighted Fair Queuing

echanism (Zhang, 1990), where the concrete weight of each queue

s computed in Eq. (6).

ξg = sg

(1 + β)
∑

i si

, ∀g = 0 . . . 7

ξS = β
∑

i si

(1 + β)
∑

i si

= β

1 + β

(6)

here s
( j)
g is the number of bytes received by group Gg in the jth day,

g = 0, . . . , 7 and j = 1 . . . , D, sg = ∑
j α js

( j)
g represents its weighted
verage over the past D days (according to the day weights presented

n Eq. (2)).

. Implementation on top of the StreamCloud stream processing

ngine

This section presents how STONE has been implemented on top

f StreamCloud (Gulisano et al., 2012), a state-of-the-art parallel-

istributed SPE. We first discuss how the DCC and the MC have been

mplemented by means of data streaming operators. Subsequently,

e give a brief overview about how StreamCloud parallelizes data

treaming operators. Finally, we present how both the DCC and the

C are run in parallel by StreamCloud.

As presented in Fig. 6, the DCC is composed of six data streaming

perators. Operator getSrcCL processes Sa tuples and modifies their

chema 〈srcIP, tsA, tsB, packets, bytes〉 replacing the srcIP with its re-

pective source cluster srcCL. The operator updateFs maintains the

eatures of each source cluster. For each incoming tuple t, an output

uple composed by attributes 〈srcCL, tsA, fold, fnew〉 carries the features

f the source cluster srcCL before (fold) and after (fnew) processing t.

eatures fold and fnew are used by the getGsChange operator to com-

ute groups Gold and Gnew. Whenever a source cluster appears, disap-

ears or changes the group it belongs to (i.e., whenever Gold �= Gnew),

tuple composed by attributes 〈srcCL, tsA, Gold, Gnew〉 is forwarded to

he operator getGsSize. For each incoming tuple, the operator getGs-

ize updates Gold and Gnew counters and produces a tuple composed

y attributes 〈tsA, n̂0, . . . , n̂7〉. These tuples are consumed by the op-

rator getRatios, which updates the current ratio of each group, pro-

ucing tuples composed by attributes 〈tsA, r̂0, . . . , r̂7〉. Updated ratios

re forwarded to operator checkRatios and compared with the refer-

nce ratios in order to spot anomalies.

Operator updateFs maintains a sliding window of tuples, Wi, in or-

er to update the features fi of each source cluster (i.e., it is a stateful

perator). As introduced in Section 4, the operator relies on four EHs

Exponential Histograms), one for each counter, to maintain the fea-

ures of each source cluster. All the other operators do not maintain

uple windows (i.e., they are stateless) and have constant order space

omplexity in the window size. A naïve approach to compute a sum

ver a window would be to maintain all its tuples (updating the sum

or each tuple entering or leaving the window). As discussed by Datar,

ionis, Indyk, and Motwani (2002), EHs reduce the space complexity

equired to compute sums from linear to poly-logarithmic in the win-

ow size aggregating the information of consecutive tuples.

The MC is composed of a single stateless data streaming operator.

ore concretely, a filter is used to forward or discard each packet of

tream S.

By relying on StreamCloud, STONE’s operators can be run in parallel

t an arbitrary number of SPE instances. Operators are parallelized by

eploying multiple copies of them at different SPE instances and by

artitioning their input streams.

Fig. 7 presents how STONE’s operators getSrcCL and updateFs are

eployed in parallel at M and N SPE instances, respectively. The term

ubcluster refers to the set of SPE instances running a given parallel

perator. At each SPE instance, a Load Balancer (LB) routes output tu-

les to downstream instances while an Input Merger (IM) merges in-

ut tuples forwarded by upstream instances. How tuples are routed
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getSrcCLIM LB updateFsIM LB

getSrcCLIM LB updateFsIM LB

...

...

SPE Instance 1 SPE Instance 1

SPE Instance M SPE Instance N

Subcluster 1 Subcluster 2

Fig. 7. Sample parallel-distributed deployment of operators getSrcCL and updateFs.
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between two generic subclusters SC1 and SC2 depends on the first op-

erator deployed at SC2. Round-robin routing is employed if the opera-

tor deployed at SC2 is stateless while hash-based routing is employed

if the operator is stateful. In this second case, the stream connecting

SC1 and SC2 is partitioned into B buckets depending on the semantics

of the stateful operator and each bucket is assigned to exactly one of

the SC2’s instances. In the example, the stream connecting getSrcCL

and updateFs will be partitioned on the srcCL attribute (updateFs is a

stateful operator). Doing this, tuples referring to the same srcCL will

always be processed by the updateFs operator running at the same

SPE instance. We refer the reader to Gulisano et al. (2010) for a de-

tailed discussion about how queries are partitioned into subclusters

in order to maximize the overall query throughput.

Fig. 8 presents the parallel-distributed deployment of STONE’s

query in StreamCloud. Following StreamCloud parallelization rules, the

DCC has been partitioned into three subclusters. A first subcluster is

defined for getSrcCL. A separate subcluster has been defined for up-

dateFs and the following stateless operators getGsChange and getGs-

Size. Finally, a centralized subcluster has been defined for getRatios

and checkRatios. These two operators are centralized since they need

to gather all the group counters maintained by getGsSize in order to

compute the observed ratios and compare them with the expected

ones. It should be noticed that the centralized execution of getRa-

tios and checkRatios does not constitute a bottleneck. As an exam-

ple, gathering the counter periodically every 0.05 s from 100 SPE in-

stances running getGsSize results in a rate of 2000 tuples/s, which is

lower than the maximum throughput of getRatios and checkRatios, es-

timated at approximately 10000 tuples/s.

The MC (filter in Fig. 8) is run in parallel in a dedicated subcluster.

The instances of operator filter take decisions about which packets to

discard depending on the available bandwidth of the protected entity.

Such information must be derived from the bandwidth consumed by
getSrcCLIM LB uIMLB

getSrcCLIM LB uIMLB

...

...

filterIM LBLB

filterIM LBLB

...

...
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Semantic-aware

routing (getSrcCL)
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S
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Sa
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Fig. 8. Complete parallel and distributed d
he packets forwarded by each operator instance. For this reason, filter

nstances are interconnected in order to share the amount of packets

eing forwarded by each one of them.

. Evaluation

In this section, we evaluate STONE’s detection and mitigation ca-

abilities together with its scalability. An effective DDoS defense

echanism should detect anomalies quickly and mitigate them with-

ut affecting legitimate users’ traffic. For this reason, we focus in this

valuation on the (1) detection time, the time elapsed between the

eginning of the anomaly and its detection, the (2) mitigation pre-

ision, which quantifies the degradation of the legitimate traffic and

he (3) traffic volume shaping, which quantifies the portion of overall

raffic discarded during an anomaly. With respect to the scalability

valuation, we study how the throughput and the CPU consumption

f STONEmachines evolve for increasing loads and different parallel-

istributed setups of 1, 10, and 20 nodes.

.1. Evaluation setup

The legitimate traffic is composed by anonymized data traces from

n OC-192 (10 Gbits/s) backbone link of OptoSUNET (Swedish Univer-

ity Computer Network) (The Swedish University Computer Network

ptoSUNET, 2012). The link connects OptoSUNET to NORDUnet (The

ORDUnet IP & MPLS network, 2012), via which the former can reach

he rest of the world, and carries around one third (3 backbone links

xist) of its inbound traffic. The data traces are excerpts of the traf-

c happening on 9 consecutive Thursdays (during the year 2010) be-

ween 11:00 a.m. and 12:00 a.m. During the experiments the data

races’ packets are fed to STONE at their original rate while tuples be-

onging to the aggregated network stream Sa are generated for con-

ecutive intervals of 5 min. We select as the protected entity one of

he destination hosts appearing in the data traces showing continu-

us incoming TCP connections. The HD is populated using the traffic’s

eatures observed during the first 8 Thursdays while the last day trace

s used as legitimate data trace.

The suspicious data trace is taken from CAIDA (Hick et al., 2007)

nd contains anonymized packets from a DDoS attack. According to

he description from CAIDA, this attack attempted to block access to

he targeted server by consuming both the computing resources and

he incoming link’s bandwidth of the server. Since STONE does not

nalyze the cause of an anomaly and cannot state whether a single
protected

entity

getRatiosIM checkRatios

pdateFs getGsChange getGsSize

pdateFs getGsChange getGsSize

. ..

DCC

eployment of STONE in StreamCloud.
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Fig. 9. Detection time. The attack is detected after 18 s.
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acket is illegitimate or not, we refer in the following to the attack

ata as suspicious to put ourselves in STONE’s perspective. The num-

er of packets in the suspicious data trace exceeds by two orders of

agnitude the one in the legitimate data trace. During the evaluation,

he suspicious data trace is mixed with the legitimate data trace. The

egitimate data trace covers a period of one hour, the suspicious data

race is injected starting from minute 20 (second 1200). The desti-

ation host in the suspicious data trace’s packets has been changed

o the protected entity appearing in the legitimate data trace. In our

valuation we use a cluster of quad-core nodes equipped with Xeon

3220@2.40 GHz, 8 GB of RAM and 1 Gbit Ethernet.

.2. Detection time

Fast detection of DDoS attacks is crucial for an effective mitigation.

s discussed in Section 3, an anomaly is detected if the maximum

ifference between the reference and current ratio (maxi |ri − r̂i|) for

ny group i exceeds a given tolerance tol. In our evaluation, tolerance

ol has been set to 0.05 (we discuss how to appropriately chose tol in

ection 4.3). Fig. 9 shows the maximum difference between the refer-

nce and current ratios before and after the anomaly. To better appre-

iate how the difference increases after the beginning of the anomaly,

he x-axis shows a time frame of 80 s around second 1200 (the second

t which the anomaly starts). The difference starts increasing quickly

few seconds after the beginning of the anomaly. In this experiment,

he anomaly is detected 18 seconds after it starts. It can be noticed

hat higher tolerance values will result in longer detection times (for

nstance, the detection time would be of approximately 30 s given

ol = 0.1).

.3. Mitigation precision

These experiments study how effective the MC is in mitigating

DoS threats. We first study its effectiveness if filtering is applied

nly based on the AL and the BF (that is, if no suspicious packet is

orwarded at all). We then repeat the experiment allowing suspicious

ackets to be forwarded applying probabilistic filtering. As discussed

n Section 5, probabilistic filtering may be used to forward suspicious
(a) Filtering of suspicious traffic based on the
Acquaintance List and the Bloom filter.

Fig. 10. Mitigation precision. Low degradation of leg
ackets that are actually legitimate (e.g., during a flash crowd). The

ortion of bandwidth assigned to the suspicious traffic has been set

o 103 kbit/s (i.e., βL = 103 kbits).

Acquaintance List and Bloom Filter filtering: Fig. 10(a) presents the

ractions of legitimate and suspicious traffic that are forwarded to the

rotected entity. The x-axis considers a time frame of approximately

5 min before the beginning of the anomaly and after its completion.

efore the anomaly starts, all the legitimate traffic is forwarded to the

rotected entity. Starting from second 1200, both legitimate and sus-

icious traffic are forwarded to the protected entity. Upon detection,

ost of the suspicious traffic (approximately 99%) is discarded while

pproximately 90% of the legitimate traffic is still forwarded to the

rotected entity. When the anomaly ends, all the legitimate traffic is

orwarded again to the protected entity.

Probabilistic filtering: Fig. 10(b) presents the fractions of legitimate

nd suspicious traffic forwarded to the protected entity when ap-

lying probabilistic filtering. It can be noticed that the portion of

egitimate traffic forwarded to the protected entity is comparable

ith the one in Fig. 10. This is because legitimate packets that are

ot forwarded by the Acquaintance List or the Bloom Filter have a

uch smaller chance of being forwarded applying probabilistic fil-

ering than suspicious ones (suspicious traffic exceeds the legitimate

ne by 2 orders of magnitude). The suspicious traffic forwarded to

he protected decreases as the overall injected suspicious traffic in-

reases and never exceeds βL (as also discussed in the following

xperiment).

.4. Traffic volume shaping

Together with the mitigation precision evaluation, we evaluate

ow effective the MC is in shaping the protected entity’s traffic vol-

me. As for the mitigation precision, we first consider the traffic vol-

me shaping when mitigation is only based on the AL and the BF.

ubsequently, we present how traffic volume is shaped when proba-

ilistic filtering is also applied to the suspicious data.

Acquaintance List and Bloom Filter filtering: Fig. 11(a) presents the

raffic volume shaping when filtering is only based on the BF and

he AL. The load is expressed in KBit/sec, using a logarithmic scale for

he y axis. The solid line represents the overall traffic load injected

uring the anomaly while the dashed line represents the one for-

arded to the protected entity. While the mitigation is not active,

ll the input traffic is forwarded to the protected entity. Once the

nomaly is detected, most of the overall traffic ( ≈ 97%) is discarded.

hat is, the BF and the AL together are able to reduce drastically the

mount of suspicious traffic.

Probabilistic filtering: Fig. 11(b) presents the traffic volume shaping

hen probabilistic filtering is applied. Once the anomaly is detected,

he forwarded traffic increases to βL, set to 103 kbits in the example,

efore being discarded. Differently from the previous experiment, all

he legitimate and suspicious traffic are forwarded as long as they do

ot saturate the protected entity.
(b) Probabilistic filtering of suspicious
traffic for the given upper bound.

itimate traffic is observed during mitigation.
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(a) Filtering of suspicious traffic based on the
Acquaintance List and the Bloom filter.

(b) Probabilistic filtering of suspicious
traffic for the given upper bound.

Fig. 11. Filtering of suspicious traffic observed during mitigation.

(a) DCC’s stateful subcluster (b) Mitigation Center’s subcluster
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7.5. Scalability evaluation

In this experiment, we evaluate the scalability of STONE imple-

mentation on top of StreamCloud. We study how its throughput and

CPU consumption evolve for different setups of 1, 10 and 20 nodes

and a linearly increasing load. In all experiments, we inject the mixed

legitimate data trace and suspicious data trace simulating a linearly in-

creasing load. The timestamp of the injected packets is modified ac-

cordingly with the injection rate. We focus on the scalability of the

stateful subcluster in the DCC and the subcluster composing the MC.

Detection Control Center scalability: Fig. 12(a) presents the evo-

lution of the throughput (upper part of the figure) and CPU con-

sumption (bottom part of the figure) for the DCC’s stateful subclus-

ter. With respect to STONE’s throughput, the subcluster is able to

process approximately 6000 tuples/s (t/s) when running at a single

node (centralized execution) . Using a setup of 10 nodes, the max-

imum throughput increases to approximately 55,000 t/s (9.2 times

the throughput achieved by the centralized execution). Finally, when

running at 20 nodes, the maximum throughput increases to approx-

imately 98,000 t/s (16.3 times the throughput of the centralized ex-

ecution). Focusing on the CPU consumption curves, it can be noticed

that the higher the number of SPE instances running the parallel sub-

cluster, the milder the slope of the curves. This result is expected,

since the injected load is increasing linearly.

Mitigation Center scalability: Fig. 12(b) presents the throughput

and CPU evolution for the MC’s subcluster. Results for the MC are

similar to the ones observed for the DCC. The centralized execution

of the subcluster achieves a throughput of approximately 8000 t/s.

The throughput increases to approximately 79,000 t/s when running

the subcluster at 10 nodes (9.9 times the centralized execution). The

maximum throughput increases to approximately 135,000 t/s (16.9

times the centralized execution) when running the subcluster at 20

nodes. As for the DCC scalability evaluation, the CPU consumption

f

rows with a milder slope as more instances are deployed for the par-

llel subcluster.

. Related work

In this section, we present DDoS attacks defense solutions dis-

ussed in the literature and compare them with STONE. We first

iscuss DDoS attacks detection methods. Subsequently, we focus on

DoS attacks mitigation methods. Finally, we present a dedicated

omparison with other expert systems designed for DDoS attacks

efense.

.1. Network anomaly detection methods

Network anomaly detection is a rich research area. As we dis-

ussed in Section 1, detection on its own (especially if defined as an

ffline method) is not enough to protect a target if not coupled with

n effective mitigation scheme.

At the same time, as Peng, Leckie, and Ramamohanarao (2007)

iscuss, the deployment of a DDoS detection method is also of crucial

mportance. Nonetheless, as evidenced also by recent studies running

xtensive comparisons between existing anomaly detection schemes

Bhuyan, Bhattacharyya, & Kalita, 2014), distributed analysis solu-

ions are not usually provided. Differently from STONE, none among

he 71 publications summarized in the article tables provides a com-

letely distributed solution. At the same time, none of the 17 network

ntrusion detection systems (NIDS) taken into account provided on-

ine and real time detection of DDoS attacks (one of the motivating

hallenges behind STONE).

Tan et al. (2014) proposed a DoS attack detection method based

n multivariate correlation analysis. Although the method results in

high detection rate, its detection time is not evaluated, differently

rom STONE. The proposed method has time complexity O(m4), where
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is the number of features. This complexity is higher that STONE’s

ne, which is O(m × p), where p is the number of profiles. Also in

his case, authors do not discuss how the method can be run in a

istributed and parallel fashion.

Bhuyan, Bhattacharyya, and Kalita (2015) presented an empiri-

al evaluation for DDoS attack detection based on two metrics: the

enyi’s entropy and the information divergence. Both metrics are

ased on the empirical probability distribution over three features

source IP, destination IP and protocol) in a window of 10 s. Two

mpirical distributions are computed for current traffic and legiti-

ate one. The entropy-based approach relies on the difference in en-

ropy of such distributions to detect attacks. The divergence-based

pproach, on the other hand, detects attacks by directly comparing

he two empirical distributions. However, at vantage points, the num-

er of source IP is large and maintaining an empirical probability dis-

ribution over each source IP is not feasible in terms of space and

omputational resources. Evaluation over CAIDA traces shows that

hese techniques are able to detect high-rate and low-rate DDoS at-

acks, but, also in this case, do not evaluate the time required to detect

uch attacks.

When focusing on streaming-based DDoS detection methods, the

ain approach to detect threats is to track destination IP addresses

aving a large number of half-open connected source IPs. Ganguly

t al. (2007) proposed a distinct-count sketch to estimate the top-

distinct-source frequencies. A sketch is a probabilistic summary

hich relies on projection along random vectors to achieve space ef-

ciency with guaranteed probabilistic reconstruction accuracy. Dif-

erently from STONE, sketch-based solutions do not support continu-

us monitoring with sliding windows, since the random vectors used

or maintaining the sketches are reset when some anomalies are de-

ected or some predefined period expires. Other proposed stream-

ased solution based on sketches (Gao et al., 2006; Krishnamurthy,

en, Zhang, & Chen, 2003) or hash buckets (Kompella, Singh, & Vargh-

se, 2007; Zhao, Xu, & Kumar, 2006) exhibit the same limitations.

Sketches are also used by Anceaume and Busnel (2014) to es-

imate the KL-divergence between two streams. The KL-divergence

etric can be employed to detect threats by comparing current traf-

c with known legitimate traffic. The evaluation conducted by the

uthors shows an accurate approximation of the proposed sketch-

ased KL-divergence value to the exact divergence value. Moreover,

uthors present a distributed version of the algorithm to compute the

lobal KL-divergence among a set of l distributed data streams with

espect to the expected one. The authors define global KL-divergence

s the sum of the stream-to-stream KL-divergence. However, in the

resence of a potential DDoS attack in which the malicious traffic

s distributed along the l possible streams, a low stream-to-stream

L-divergence would result in undetected threats. In addition, the

roposed algorithm is incremental, not allowing for deletions but

ather considering all the traffic history despite the major shift in

he sources behavior that could happen during time (the latter be-

ng taken into account by STONE).

.2. DDoS mitigation methods

Differently from detection, less solutions have been proposed

bout mitigation of DDoS attacks. The mitigation technique pre-

ented by Chen, Tang, and Du (2007) proposes filtering rules that can

e deployed at firewalls. Nevertheless, it assumes that a given detec-

ion scheme exists and is able to specify which portion of the traffic

hould be filtered out. By assuming this, it overlooks a fundamen-

al motivation and challenge behind STONE, the joint detection and

itigation of DDoS attacks. At the same time, the proposed solution

iffers from STONE since it does not discuss whether it can be lever-

ged for protection of threats such as flash crowds and also because

ts evaluation is mainly based on simulations.
A joint detection and mitigation framework for DDoS attacks is

resented by Zhou, Jia, Wen, Xiang, and Zhou (2014). Nonetheless, the

roposed scheme is only valid for application layer attacks. STONE, on

he other hand, can protect from other attacks (such as SYN flood at-

acks) too. At the same time, Zhou et al. (2014) provide distributed

ut not parallel analysis. That is, it can be deployed at vantage points

uch as backbone links but treat the traffic of each link independently.

ifferently from this, STONE can maintain statistics about a target in-

ependently of the number of links through which its data travels to.

Detection schemes tailored to particular scenarios are also dis-

ussed in the literature. Despite the different focus between such

chemes and STONE, it is still possible to note how STONE is able to

vercome some of their limitations, as discussed in the following.

ahu and Pandey (2015) discuss a defense scheme for wireless sensor

etworks. In this case, the proposed detection and mitigation meth-

ds are based on monitoring of the frequency with which clients con-

ect to a given entity (the possible target of a DDoS attack). As we

howed in Section 4, frequency is an important feature but it is not

nough by itself to detect different types of DDoS attacks.

Wang, Zheng, Lou, and Hou (2015b) and Yu, Tian, Guo, and Wu

2014) focus on DDoS defense systems in the context of Cloud In-

rastructures. Wang et al. (2015b) discuss how to match DDoS de-

ense systems and cloud infrastructures. In this direction, an interest-

ng point of view about leveraging of Cloud infrastructures for DDoS

efense is discussed by Yu et al. (2014). The authors claim that the

ey to success from the target perspective is to have access to com-

utational power that exceeds the adversary’s one. This mitigation

ethod is legitimate for big Cloud infrastructures that have consid-

rable resources to provision in order to exceed the ones of an at-

acker. Nevertheless, it is of limited utility for small Cloud infrastruc-

ures. At the same time, by increasing the computational power in

esponse to a possible threat, such a mitigation scheme would also

ncur in extra costs. The appeal of Cloud infrastructures stems for

heir reduced maintenance and deployment costs for the users. In

his sense, detection and mitigation schemes as the ones proposed

y STONE could still be leveraged to discard suspicious traffic and thus

educe the computational power needed to communicate with legit-

mate clients.

.3. DDoS defense based on expert systems

As we have already mentioned, the focus of expert systems has

een mostly applied in anomaly detection rather than attack mitiga-

ion. Wang et al. (2010) present an intrusion detection system relying

n two analysis steps. In the first step, a fuzzy algorithm is used to find

roups of similar traffic. Then, an artificial neural network is build

ver each cluster to profile the traffic. The algorithm achieves good

esults in terms of precision and recall when compared with other

ethods such as decision trees, naive Bayes and back-propagation

eural networks. However, the complexity of the algorithm might not

llow for meeting near real-time constraints as needed; for example

n the case study shown in the paper, the algorithm needs more than

5 minutes to build the profiles. Although the authors discuss direc-

ions to parallelize the algorithm, there is no evaluation focusing on

ow such system would address the high throughput and low latency

nalysis challenges addressed by STONE.

Choras, Saganowski, Renk, and Holubowicz (2012) present an

nomaly detection framework based on signal-based features ex-

raction and consider 15 features decomposing feature-signal with a

atching pursuit. Signal decomposition is used to create profiles that

re later used to detect anomalies. Although the proposed method

ocuses on anomaly detection in a broad sense, rather than on DDoS

ttacks concretely, the fifteen features taken into account seem to

e useful for detection of threats such as TPC flood and UDP flood

nes. Results show their effectiveness in terms of detection rate and

alse positive rate. However, authors do not present any results about
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the time needed to process incoming traffic (to maintain profiles up-

dated) or the time spent to detect and attack.

Kumar and Selvakumar (2012) present an anomaly detection sys-

tem focused in high rate flooding DDoS attacks. Authors consider 6

metrics associated to the three flooding attacks (SYN, UPD and HTTP).

Then, for each type of flooding attack, they extract profiles using a

mixture of five machine learning algorithms (two based on decision

trees, one based on a multi-layer perceptron, one based on k-nearest

neighbor and one based on naive Bayes). As usual, profiles are the

base for detecting anomalies. The evaluation shows detection rates

and false positive rates over DDoS traces (as CAIDA dataset). Authors

argue than the low number of features make the algorithm suitable

for real time detection systems. However, when an attack happens,

the volume of data increases quickly and the machine learning algo-

rithms can become a bottleneck not only because of the number of

features, but also because of the large volume of samples to analyze

(as we discussed, this is one of the motivations behind STONE’s adop-

tion of the data streaming processing paradigm).

9. Conclusions and future work

We presented STONE, a framework with expert system function-

ality that provides effective online defense from DDoS attacks. STONE

is composed by two main modules, the Detection Control Center, in

charge of detecting traffic anomalies, and the Mitigation Center, in

charge of filtering the network traffic and preventing an attack from

saturating the communication and computational resources of a tar-

get. The novelty of STONE lies in its joint online detection and mitiga-

tion schemes. This is enabled by the information shared by STONE’s

modules, leveraged to both detect and mitigate threats. It is also en-

abled by its parallel-distributed streaming analysis, which allows for

fast detection and effective mitigation of traffic volumes that can be

observed at vantage points such as backbone links.

STONE differs from other expert systems proposed in the literature

since the latter usually focus on the detection facet of DDoS attacks,

but overlook their mitigation, as discussed in Sections 1 and 8 . To the

best of our knowledge, only Zhang et al. (2004) discussed the features

of an expert system focusing both on DDoS detection and mitigation.

Nevertheless, the authors focused on the interaction between the de-

tection and mitigation phases, but did not propose any specific im-

plementation. Differently, STONE introduces a complete framework,

designed and developed to process large volumes of data in an online

fashion.

As future work, the detection and mitigation techniques proposed

by STONE could be tested once deployed in real-word vantage points.

This would give useful insights on the latency overhead introduced

by the geographically distributed analysis run by STONE. At the same

time, it would also allow for a deeper study, complementary of work

such as (Wang et al., 2015a), of the types of DDoS attacks observed on

a daily basis and the ratio between true and false positive alarms. We

believe it could also be of interest to study how the information main-

tained and used by other expert systems to detect DDoS attacks could

be leveraged to complement STONE’s mitigation schemes. In such a

scenario, it would be challenging to study how to maintain such in-

formation in an online fashion and how to share it with STONE’s mit-

igation center.

Based on our experience with STONE, we believe future directions

can be also delineated for novel expert systems focusing on other data

analysis scenarios. The stream processing paradigm has been suc-

cessfully leveraged in scenarios of interest for expert systems, such

as financial markets (Tripathi & Pavaskar, Nov. 2012), cyber-physical

systems (Gulisano, Almgren, & Papatriantafilou, 2014a; 2014b), vehic-

ular systems (Gulisano, Nikolakopoulos, Walulya, Papatriantafilou, &

Tsigas, 2015) and health care and patient monitoring (Andrade, Mor-

gan, & Turaga, 2014). In this sense, it would be interesting to explore

how to leverage the data streaming paradigm in expert systems fo-
using on the mentioned domains. Orthogonality, but still comple-

entary to this direction, it would also be of interest to study the

doption and tailoring of streaming-based expert systems in conjunc-

ion with cloud infrastructures and lambda architectures. Cloud in-

rastructures are of particular interest for real-world use cases (Wang

t al., 2015b; Yu et al., 2014) because of their reduced deployment

nd maintenance costs. Nonetheless, as discussed by Gulisano et al.

2012), proper leveraging of Cloud infrastructures depends on the de-

ign and implementation of features such as load balancing and elas-

icity, which would depend on the specific expert system taken into

ccount. Lambda architectures such as Zaharia, Chowdhury, Franklin,

henker, and Stoica (2010), which allow for store-then-process and

treaming paradigms to co-exist, would also be of interest from an

xpert system perspective. Such architectures would allow for of-

ine expert systems (or systems leveraging the traditional store-

hen-process paradigm) to be leveraged in conjunction with stream-

ng based ones. At the same time, they could also ease the transition

f certain functionality from the former to the latter. This transition

elineates a future direction itself, since it would require new effec-

ive ways for porting the functionality and for sharing the information

aintained by existing store-then-process expert systems (e.g., when

oupling the detection method of a store-then-process based expert

ystem with a novel streaming-based mitigation scheme).
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